PRACTICAL FILL UP THE BLANKS

1. Soil profile descriptions are basic data in all _____ 2. Profile pits are traditionally _____ in shape 3. The key task in profile description is recognizing how many _____ it contains 4. The distinctness of the boundary is described based on the _____ and ____ of the horizon. 5. The degree of horizon irregularity is described as _____, ____, 6. Horizons with multiple colors is called as _____ 7. Stones are the soil particles larger than 2 mm in diameter and are described in terms of _, _____ and __ 8. Calcium carbonate content in soil profile is qualitatively assessed by adding _____ 9. Krotovina is related to _____ activity 10. Surface horizon rich in organic matter is known as _____ 11. Surface horizon which is light colored with low organic matter is 12. The sub surface horizon present in sodic soil is _____ 13. The formative element for vertisol is 14. Mollisol order will have ______ epipedon 15. Argillic horizon with more than 35% BSP comes under _____ order 16. Fibrist is the suborder coming under order 17. Plinthite layer is formed in _____ order 18. The vertical section of soil column showing different horizons is called as 19. There are _____ number of soil orders 20. The scale of map used in RSS is _____ 21. _____ is the base map used in DSS 22. Map produced with a scale of 1:100,000 is called as _____ 23. The soil mapping unit in DSS is 24. There are _____ number of epipedons 25. The highest category in the soil taxonomy is_____ 26. The lowest category in the soil taxonomy is _____ 27. In soil classification as Peelamedu, fine montmorillonitic isohyperthermic Typic Haplusterts, soil order is 28. The AC profile is noticed in _____ order 29. The OC profile is noticed in _____ order 30. ____ order has bestowed with thick A horizon 31. The Bss is noticed in _____ order

- 32. The Bhs is observed in _____ order
- 33. The juvenile soil belongs to _____ order
- 34. The matured soil belongs to _____ order
- 35. Soil moisture regimes range from _____to ____
- 36. Soil temperature regime ranges from _____ to _____
- 37. Soils are divided into different orders based on _____
- 38. Sub orders are grouped based on _____ and _____
- 39. A geographical representation showing diversity of soil types and/or soil properties is referred to as ______
 - Maps used for delineations of soil boundaries is _____
- 41. Classifying the soils above the level of soil series is called as _____
- 42. An alternative to a base map is to use an _____
- 43. The base map used in RSS is _____

40.

- 44. The cadastral map as base map is used in _____
- 45. The frequency of auger sampling in RSS is _____
- 46. The profile observation is done in DSS is _____
- 47. The profile observation is done in RSS is _____
- 48. The scale of map in RSS is _____
- 49. The scale of map in DSS is _____-
- 50. The soil mapping unit in RSS is _____
- 51. The soil mapping unit in DSS is _____
- 52. Soil series and its association is used as mapping unit in _____
- 53. Soil types and phases is used as mapping unit in _____
- 54. The level of mapping under RSS is _____
- 55. The level of mapping under DSS is ____-
- 56. The map produced at 1: 100,000 scale is called as _____
- 57. The map produced at 1: 10000 scale is called as _____
- 58. The large scale map is advocated in ______ survey
- 59. The small scale map is advocated in ______ survey
- 60. The intensity of survey undertaken in RSS is _____
- 61. The intensity of survey undertaken in DSS is _____
- 62. The scale of mapping done at national level planning is _____
- 63. The scale of mapping done at Regional level of mapping is _____
- 64. The scale of mapping done at Village or taluk level of mapping is _____
- 65. _____ proposed that four factors are responsible for productivity of soil
- 66. Storie index showed 65%, the productivity of soil comes under_____

67. Coefficient improvement of soil is given by the formula_____ 68. The structure of LCC consists of capability classes, capability sub classes and _____ 69. In LCC, as the capability class move from I to VIII, limitation 70. Capability class I to IV is fit for _____ 71. In LIC, class 6 indicates _____ 72. In FCC, Type indicates ____ 73. Maps generated out of standard soil surveys is _____ 74. The structure of land suitability classification is _____ and ____ 75. _____ is the predictor of various chemical properties of soil 76. The apparatus used to extract water from soil water paste is The Buchner funnel comes under _____ type of filtration 77. 78. _____ is used an index for finding extent of soluble salts present in the soil 79. Soil EC is used as an parameter to distinguish a _____ from a _____ 80. _____ method is preferred to estimate soil EC in saline and sodic soils 81. The CEC in problem soils is estimated by _____ method 82. Lime is added to reclaim _____ soil 83. Lime requirement of acid soil by ____was proposed by____ 84. The gypsum requirement of sodic soil was proposed by_____ 85. The indicator used in the estimation of gypsum requirement is _____ 86. The equivalent weight of gypsum is 87. The amendment used for reclaiming sodic soil is _____ 88. Calcium and magnesium in the water is estimated by _____ method 89. The equivalent weight of calcium is _____-90. The equivalent weight of magnesium is ____ 91. one ml of 0.02N EDTA is equal to _____ g of Ca 92. one ml of 0.02N EDTA s equal to _____ g of Mg 93. The indicator used in the estimation of calcium is 94. The indicator used in the estimation of calcium and magnesium is _____ 95. Meq/l = ppm/? 96. Sodium and potassium in water is estimated using _____ instrument 97. The indicator used in the estimation of chlorides in water is 98. one ml of 0.02N AgNO₃ is equal to $g ext{ of } Cl^{-1}$ 99. The end point in the estimation of chlorides is ____ 100. The equivalent weight of chloride is ____-Presence of carbonate in the irrigation water is found by using indicator 101. 102. The indicator used for bicarbonate estimation is_____

103. The equivalent weight of carbonate is _____

104. The water on analysis gave 6 meq/l of calcium, in terms of ppm is _____

105. Sulfate content in the irrigation water is estimated by _____ method

106. The equivalent weight of sulfate ion is _____

107.SAR is given by the formula_____

108.RSC of water showed 1.75 meq/l, the suitability of water showed _____

109. The red flesh precipitate formed in chloride estimation is chemically called as _____

110. SAR of water is 20, the suitability of water is _____

111. The sodium to calcium activity ratio is given by the formula _____

112. For a good water, sodium ratio shall not exceed _____

113. Alkali hazard in water is evaluated by _____ and _____

114. The potential salinity in water is given by the formula _____

115. If chloride concentration is more than 20 m.e/l, the water is considered _____

116. Classification of irrigation water as per USSL is based on _____ and _____

117. The headquarters of National Bureau of Soil Survey and Land Use Planning is located at _____

118. The number of regional centres under NBSS & LUP is _____

119. Soil survey unit in Tamilnadu was started at _____ and during _____

120. The number of soil survey units in Tamilnadu is ______ to conduct soil studies

PROBLEMS

- 1) Identify the order, sub order, great group, sub group, texture, mineralogy, temperature and moisture regime for the following soil description
 - 1) Loamy, mixed, isohyperthermic Typic Ustorthents
 - 2) Sandy, Mixed, isohyperthermic Typic Calciustepts
 - 3) Very fine, Smectitic, isohyperthermic, Typic Haplusterts

4) Coarse loamy, mixed , hyperthermic Ustic Haplocambid

- 5) Fine loamy, mixed, mesic, Typic Calcixeroll
- 6) Fine loamy, mixed, thermic Typic Haploustults
- 7) Fine loamy, mixed, isohyperthermic Typic Haplustalf

8) Fine, kaolinitic, isohyperthermic, Rhodic Haplustox

Format

Order	
Suborder	
Great group	
Subgroup	
Soil moisture regime	
Soil temperature regime	
Texture	
Mineralogy	

- 2) Calculate the amount of gypsum requirement of sodic soil using the following data Weight of soil taken for analysis = 5 g
 Volume of saturated calcium sulfate solution added = 100 ml
 Volume of aliquot pipetted for analysis = 5 ml
 Volume of 0.02N EDTA consumed in blank titration = 12 ml
 Volume of 0.02N EDTA consumed in sample titration = 10 ml
- Calculate separate amounts of carbonate and bicarbonate in the irrigation water using the following data Volume of irrigation water pipetted = 50 ml Volume of 0.1N H₂SO₄ consumed with phenolphthalein indicator = 2.5 ml Volume of 0.1N H₂SO₄ consumed to neutralize original bicarbonate and bicarbonate from carbonate = 9.0 ml
- Calculate separate amounts of calcium and magnesium in the irrigation water using th following data Volume of irrigation water pipetted = 25 ml

Volume of 0.02N EDTA consumed in Calcium estimation = 3 ml

Volume of 0.02N EDTA consumed with Calcium and Magnesium estimation = 9 ml

- 4) Twenty five ml of irrigation water utilized 2.5 ml of 0.02N AgNO₃ using potassium chromate as indicator in the estimation of chloride by Mohr's method. Calculate the amount of chloride in the water and express the result in meq/l.
- 5) Calculate the amount of sulfate present in the irrigation water using the following data Weight of empty silica crucible = 56.54 g
 Weight of silica crucible and precipitate = 56.63 g
- 6) The irrigation water sample was analyzed for the following

 $CO_3^{2-} = 120$ ppm, $HCO_3^{-1} = 120$ ppm, $Ca^{2+} = 244$ ppm, $Mg^{2+} = 72$ ppm, $Na^+ = 92$ ppm, Calculate SAR, RSC, RSBC and comment on its quality

7) The composition of the irrigation water used at the experimental station is given below along with that of drainage water from one of the experimental plots Calculate RSC and SAR and comment on its quality

Ion	Irrigation water(meq/l)	Drainage water(meq/l)
Ca	7.55	15.25
Mg	4.12	8.96
Na	12.65	27.32
CO ₃	15.5	20.5
HCO ₃	16.5	22.5

8) A sample of irrigation water gave the following results

Cations	Meq/l	Anion	Meq/l
Ca	5	CO ₃	2
Mg	3	HCO ₃	10
Na	21.6	-	-

Calculate RSC, SAR and give the opinion about the suitability of irrigation water for agriculture

9) Calculate the RSC of the water sample based on the following data and comment on its suitability

Volume of water sample used = 25 mlVolume of $0.1N H_2SO_4$ consumed with phenolphthalein = 2 ml Volume of $0.1N H_2SO_4$ consumed with methyl orange = 5 ml Volume of 0.02N EDTA consumed with Ca titration = 0.5 ml Volume of 0.02N EDTA consumed with Ca and Mg titration = 1.6 ml 10) Calculate SAR in the irrigation water using the following data and comment on its quality of water Volume of irrigation water pipetted for analysis= 10 ml Volume of 0.02N EDTA consumed with Ca titration = 0.6 ml Volume of 0.02N EDTA consumed with Ca and Mg titration = 1.1 ml Concentration of Na in the water sample as read from the standard graph = 63 ppm 11) Calculate CEC of the given soil using the following data Weight of soil taken for analysis = 5 gVolume of sodium acetate extract made up =100 mlConcentration of sodium in the extract as read from the graph = 25 ppm (10 times dilution)

SOLUTION TO THE PROBLEMS

1) Weight of soil taken for analysis = 5 gVolume of saturated calcium sulfate solution added = 100 mlVolume of aliquot pipetted for analysis = 5 mlVolume of 0.02N EDTA consumed in blank titration = 12 ml Volume of 0.02N EDTA consumed in sample titration = 10 ml Volume of 0.02N EDTA used up for Ca adsorbed by soil colloids = 12-8 ml Meq of $Ca = 0.02 \times (12-10)$ Meq. of Ca in $5 \text{ ml} = (12-10) \times 0.02$ Meq. of Ca in 100 ml = $(12-10) \times 0.02 \times 100/5$ Meq. of Ca in 5 g soil = $(12-10) \times 0.02 \times 100/5$ Meq.of Ca in one hectare soil = $(12-10) \times 0.02 \times 100/5 \times 100/5 \times 2465000/100$ In terms of gypsum (kg/ ha) = $(12-10) \times 0.02 \times 100/5 \times 100/5 \times 2465000/100\times 86/1000$ In terms of ton/ha = $(12-10) \times .02 \times 100/5 \times 100/5 \times 2465000/100 \times 86/1000 \times 1/1000$ **Result:** The gypsum requirement of sodic soil = 33.9 t/ha 2) Volume of irrigation water pipetted = 50 mlVolume of $0.1N H_2SO_4$ consumed with phenolphthalein indicator = 2.5 ml Volume of 0.1N H₂SO₄ consumed to neutralize original bicarbonate and bicarbonate from carbonate = 9.0 ml

Volume of $0.1N H_2SO_4$ required to neutralize the bicarbonate alone = (9 - 2.5) mlVolume of $0.1N H_2SO_4$ required to neutralize the carbonate alone = $2.5 \times 2 ml$

Carbonate

One ml of $0.1N H_2SO_4 = 0.003 \text{ g of } CO_3^ 2.5 \text{ x } 2\text{ml of } 0.1N H_2SO_4 = 0.003 \text{ x } 2 \text{ g of } CO_3^ 50 \text{ ml of irrigation water contains} = 0.003 \text{ x } 2.5 \text{ x } 2 \text{ g of } CO_3^ 1000 \text{ x } 1000 \text{ ml of irrigation water contains} = 0.003 \text{ x } 2.5 \text{ x } 2 \text{ x } 1000 \text{ x } 1000 \text{ ppm of } CO_3^-$

50

Equivalent weight of $CO_3^- = 30$

In terms of meq /
$$l = \underline{ppm}$$

Eq.wt
= $\underline{0.003 \times 2.5 \times 2 \times 1000 \times 1000}$ = 10
50 x 30

Bicarbonate

One ml of $0.1N H_2SO_4 = 0.0061g$ of HCO_3^- (9 - 2.5) ml of $0.1N H_2SO_4 = 0.0061 x$ (9 - 2.5) g of HCO_3^- 50 ml of irrigation water contains = 0.0061 x (9 - 2.5) g of HCO_3^- 1000 x 1000 ml of irrigation water contains = 0.0061 x (9-2.5) x 1000 x1000 ppm of HCO_3^-

50

Equivalent weight of $HCO_3^- = 61$

In terms of meq / 1 = ppm
Eq.wt
$$\frac{0.0061 \text{ x } (9-2.5) \text{ x } 1000 \text{ x } 1000}{61 \text{ x } 50} = 13$$

Result;

Amount of carbonate present in irrigation water = $10 \text{ meq } l^{-1}$ Amount of bicarbonate present in irrigation water = $13 \text{ meq } l^{-1}$

3) Volume of irrigation water pipetted = 25 ml
Volume of 0.02N EDTA consumed in calcium estimation = 3 ml
Volume of 0.02N EDTA consumed with calcium and magnesium estimation = 9 ml
Volume of 0.02N EDTA used for Mg titration = (9 - 3) ml

Calcium

One ml of 0.02N EDTA = 0.0004 g of Ca 3 ml of 0.02N EDTA contains = 3 x 0.0004 g Ca 25 ml of water sample contains = 3 x 0.0004 g Ca 1000 x 1000 ml of water sample contains = $3 \times 0.0004 \times 1000 \times 1000$ ppm Ca²⁺ 25 Equivalent weight of calcium = 20 In terms of meq / litre = $\frac{ppm}{Eq.wt}$ $= 3 \underline{x \ 0.0004 \ x \ 1000 \ x \ 1000}_{25 \ x \ 20} = 2.4$

Magnesium

One ml of 0.02N EDTA = 0.0002432 g of Mg (9 – 3) ml of 0.02N EDTA contains = (9 – 3) x 0.0002432 g Mg 25 ml of water sample contains = (9 – 3) x 0.0002432 g Mg 1000 x 1000 ml of water sample contains = (9-3) x 0.0002432 x 1000 x1000 ppm Mg²⁺ 25

Equivalent weight of magnesium = 12.16In terms of meq / litre = <u>ppm</u>

Eq. Wt.
=
$$(9-3) \ge 0.0002432 \ge 1000 \ge 1000 = 4.8$$

25 \xet 12.16

Result

- 1. Amount of calcium present in the water sample = $2.4 \text{ meq } l^{-1}$
- 2. Amount of magnesium present in the water sample = 4.8 meq^{-1}
- 4) Volume of irrigation water taken for analysis = 25 ml Volume of 0.02N AgNO₃ solution used in titration = 2.5 ml One ml of 0.02N AgNO₃ = 0.00071 g Cl⁻ 2.5 ml of 0.02N AgNO₃ = 0.00071 x 2.5 g Cl⁻ 25 ml of irrigation water contains = 0.00071 x 2.5 x 1000 x 1000 ppm Cl-25 Equivalent weight of chlorides = 35. 5 In terms of meq / 1 = 0.00071 x 2.5 x 1000 x 1000 = 2 25 x 35.5

Result

The amount of chloride in the given irrigation water = 2 meq^{-1}

5) Volume of irrigation water used = 50 ml Weight of empty silica crucible = 56.54 g Weight of silica crucible and precipitate = 56.63 g Weight of barium sulphate = (56.63 - 56.54) g 233.3 g of barium sulphate contains = 96 g sulphate (56.63 - 56.54) g of barium sulphate = $96 \times (56.63 - 56.54)$ 233.3 50 ml of irrigation water contains = $96 \times (56.63 - 56.54)$ g sulphate 233.3

1000 x 1000 ml of irrigation water contains =
$$96 \times (56.63 - 56.54) \times 1000 \times 1000$$
 ppm SO₄²⁻
233.3 X 50
Equivalent weight of sulphate = 48

In terms of meq/l = ppm/ eq. Wt. = $\frac{96 \times (56.63 - 56.54) \times 1000 \times 1000}{233.3 \times 50 \times 48}$ = 15.4

Result

Amount of sulphate present in the water sample = 15.4 meql^{-1}

- 6) $CO_3^{2-} = 120 \text{ ppm}$, $HCO_3^{-1} = 120 \text{ ppm}$, $Ca^{2+} = 244 \text{ ppm}$, $Mg^{2+} = 72 \text{ ppm}$, $Na^+ = 92 \text{ ppm}$, In terms of meq /l $CO_3^{2-} = 120/30 = 4$, $HCO_3^{-1} = 120/61 = 1.97$, $Ca^{2+} = 244/20 = 12.2$, $Mg^{2+} = 72/12.16$ = 5.92, $Na^+ = 92/23 = 4$
 - 1) Sodium absorption ratio = $\underline{Na^+}$

$$\frac{Ca^{2+} + Mg^{2+}}{2}$$

$$4$$

$$\sqrt{\frac{12.2 + 5.92}{2}} = 1.33$$
2) RSC = [CO₃²⁻ + HCO₃⁻] - [Ca²⁺ + Mg²⁺]
[4 + 1.97] - [12.2 + 5.92]
5.97- 18.12 = -12.15
3) RSBC = [HCO₃⁻ - Ca²⁺]
[1.97- 12.2] = -10.23

Result

The given water sample is safe for irrigation with respect to all the three indices

7) Irrigation water

Ca²⁺ = 7.55, Mg²⁺ = 4.12, Na⁺ = 12.65, CO₃²⁻ =15.5 and HCO₃ = 16.5
1) SAR= 12.65 = 12.65 = **5.22**

$$\sqrt{\frac{7.55 + 4.12}{2}}$$
 = 12.65 = **5.22**
2) RSC = [CO₃²⁻ + HCO₃⁻¹] - [Ca²⁺ + Mg²⁺]
[15.5 + 16.5] - [7.55 + 4.12]
[32] - [11.67] = **20.33**

Drainage water

 $Ca^{2+}=15.25$, $Mg^{2+}=8.96$, $Na^{+}=27.32$, $CO_{3}^{2-}=20.5$ and $HCO_{3}^{=}=22.5$

SAR =
$$\frac{27.32}{\sqrt{\frac{15.25 + 8.96}{2}}}$$
 = $\frac{27.32}{3.48}$ = **7.85**
NSC =-[CO₃²⁻ + HCO₃⁻¹] - [Ca²⁺ + Mg²⁺]
[20.5 + 22.5] - [15.25 + 8.96]
[43] - [24.21]

The results indicated that both irrigation and drainage water was normal with respect to sodic problem. While both waters showed alkalinity problem.

8) Ca = 5 meq/l, Mg= 3 meq/l, Na- 21.6 meq/l, CO₃²⁻ = 2 meq/l and HCO₃= 10 meq/l RSC= =-[CO₃²⁻ + HCO₃⁻¹] - [Ca²⁺ + Mg²⁺] [2+ 10] -[5 + 3] = 4 SAR = <u>Na</u> <u>3</u> $\sqrt{\frac{Ca^{2+} + Mg^{2+}}{2}}$ <u>- 5 + 3</u> = ³/₄ = **0.75** The write bility of invice tion work to DSC is used to add with respect to DSC.

The suitability of irrigation water with respect to RSC is unsafe and with respect to SAR is safe

- 9) Volume of water sample used = 25 ml Volume of 0.1N H₂SO₄ consumed with phenolphthalein = 2 ml Volume of 0.1N H₂SO₄ consumed with methyl orange = 5 ml Volume of 0.02N EDTA consumed with Ca titration = 0.5 ml Volume of 0.02N EDTA consumed with Ca and Mg titration = 1.6 ml Carbonate Volume of 0.1N H₂SO₄ required to neutralize the carbonate alone = 2.0 x 2 ml One ml of 0.1N H₂SO₄ = 0.003 g of CO₃⁻
 - $2.0 \text{ x} 2\text{ml} \text{ of } 0.1\text{N} \text{ H}_2\text{SO}_4 = 0.003 \text{ x} 2 \text{ x} 2 \text{ g of } \text{CO}_3^-$

25 ml of irrigation water contains = $0.003 \times 2 \times 2$ g of CO₃⁻ 1000 x 1000 ml of irrigation water contains = $0.003 \times 2 \times 2 \times 1000 \times 1000$ ppm of CO₃⁻ 25

Equivalent weight of $CO_3^- = 30$ In terms of meq / $1 = \underline{ppm}$ Eq.wt

$$= \frac{0.003 \text{ x } 2 \text{ x } 2 \text{ x } 1000 \text{ x } 1000}{25 \text{ x } 30} = \mathbf{16}$$

Bicarbonate

Volume of $0.1N H_2SO_4$ required to neutralize the bicarbonate alone = (5 - 2) ml One ml of $0.1N H_2SO_4 = 0.0061g$ of HCO₃⁻ (5 - 2) ml of $0.1N H_2SO_4 = 0.0061 x (5 - 2) g$ of HCO₃⁻

25 ml of irrigation water contains = $0.0061 \text{ x} (5-2) \text{ g of HCO}_3^{-1}$ $1000 \ge 1000 = 0.0061 \ge 0.0061 \ge 0.0061 \ge 0.0061 \ge 0.00061 > 0.00$ 25 Equivalent weight of $HCO_3^- = 61$ In terms of meq / l = ppmEq.wt $0.0061 \ge (5-2) \ge 1000 \ge 1000 = 12$ 61 x 25 Calcium Volume of 0.02N EDTA consumed with Ca titration = 0.5 ml One ml of 0.02N EDTA = 0.0004 g of Ca 0.5 ml of 0.02N EDTA contains = 0.5 x 0.0004 g Ca 25 ml of water sample contains = 0.5×0.0004 g Ca 1000 x 1000 ml of water sample contains = $0.5 \times 0.0004 \times 1000 \times 1000$ ppm Ca²⁺ 25 Equivalent weight of calcium = 20 $= \frac{\text{ppm}}{\text{Eq.wt}}$ In terms of meq / litre $0.5 \ge 0.0004 \ge 1000 \ge 1000 = 0.4$ = 25 x 20

Magnesium

Volume of 0.02N EDTA consumed with Ca and Mg titration = 1.6 ml Volume of 0.02N EDTA used for Mg titration = (1.6 - 0.5) ml One ml of 0.02N EDTA = 0.0002432 g of Mg(1.6 - 0.5) ml of 0.02N EDTA contains = (1.6 - 0.5) x 0.0002432 g Mg 25 ml of water sample contains = $(1.6 - 0.5) \times 0.0002432$ g Mg 1000 x 1000 ml of water sample contains = $(1.6-0.5) \times 0.0002432 \times 1000 \times 1000$ ppm Mg²⁺ 25 Equivalent weight of magnesium = 12.16In terms of meq / litre = ppmEq. Wt. $= (1.6-0.5) \times 0.0002432 \times 1000 \times 1000 = 0.88$ 25 x 12.16

Residual sodium carbonate (RSC)

RSC= =-[
$$CO_3^{2-} + HCO_3^{-1}$$
] - [$Ca^{2+} + Mg^{2+}$]
[16 + 12] - [0.4 + 0.88] = **26.72**

Result

Based on RSC value, the given water is unsafe for irrigation

10) Volume of irrigation water pipetted for analysis= 10 ml Volume of 0.02N EDTA consumed with Ca titration = 0.6 ml Volume of 0.02N EDTA consumed with Ca and Mg titration = 1.1 ml Concentration of Na in the water sample as read from the standard graph = 63 ppm Calcium Volume of 0.02N EDTA consumed with Ca titration = 0.6 ml One ml of 0.02N EDTA = 0.0004 g of Ca 0.6 ml of 0.02N EDTA contains = 0.6 x 0.0004 g Ca 10 ml of water sample contains = $0.6 \times 0.0004 \text{ g Ca}$ 1000 x 1000 ml of water sample contains = $0.6 \times 0.0004 \times 1000 \times 1000$ ppm Ca²⁺ 10 Equivalent weight of calcium = 20 $=\frac{\text{ppm}}{\text{Eq.wt}}$ In terms of meq / litre $0.6 \ge 0.0004 \ge 1000 \ge 1.2$ = 10 x 20 Magnesium

Volume of 0.02N EDTA consumed with Ca and Mg titration = 1.1 ml Volume of 0.02N EDTA used for Mg titration = (1.1 - 0.6) ml One ml of 0.02N EDTA = 0.0002432 g of Mg (1.1 - 0.6) ml of 0.02N EDTA contains = (1.1 - 0.6) x 0.0002432 g Mg 10 ml of water sample contains = (1.1 - 0.6) x 0.0002432 g Mg 1000 x 1000 ml of water sample contains = (1.1 - 0.6) x 0.0002432 x 1000 x1000 ppm Mg²⁺ 10

Equivalent weight of magnesium = 12.16In terms of meq / litre = ppmEq. Wt.

$$= (1.1-0.6) \times 0.0002432 \times 1000 \times 1000 = 1.0$$

10 x 12.16

Sodium

Concentration of Na in the water sample as read from the standard graph = 63 ppm In terms of meq/l = 63/23 = 2.74

Sodium absorption ratio (SAR)

SAR = Na 2.74

$$\sqrt{\frac{Ca^{2+} + Mg^{2+}}{2}}$$
 1.2 + 1.0 = **2.61**
2

Result

Based on SAR value, the given water is safe for irrigation

11) Weight of soil taken for analysis = 5 g Volume of sodium acetate extract made up =100 ml Concentration of sodium in the extract as read from the graph = 25 ppm (10 times dilution) 100 ml of sodium acetate extract contains = 25 ppm of Na W g of soil contains = $\frac{25 \times 10 \times 100}{5}$ ppm Na Meq of Na/100 g soil = $\frac{25 \times 10 \times 100}{5 \times 10 \times 23}$ = 21.7 cmol (p⁺) kg⁻¹

Result

The CEC of given soil = 21.7 cmol (p+) kg⁻¹

Description	Soil Order	Sub order	Great Group	Sub Group	SMR	STR	Texture	Mineralogy
Loamy, mixed, isohyperthermic Typic Ustorthents	Entisol	Orthents	Ustorthents	Typic Ustorthents	Ustic	isohyperthermic	Loamy	Mixed
Sandy, Mixed, isohyperthermic Typic Calciustepts	Inceptisols	Ustepts	Calciustepts	Typic Calciustepts	Ustic	Isohyperthermic	Sandy	Mixed
Very fine, Smectitic, isohyperthermic, Typic Haplusterts	Vertisol	Usterts	Haplusterts	Typic Haplusterts	Ustic	Isohyperthermic	Very fine	Smectitic
Coarse loamy, mixed ,hyperthermic Ustic Haplocambid	Aridisol	Cambid	Haplocambid	Ustic Haplocambid	Ustic	Hyperthermic	Coarse loamy	Mixed
Fine loamy, mixed, mesic, Typic Calcixeroll	Mollisol	Xeroll	Calcixeroll	Typic Calcixeroll	Xeric	Mesic	Fine loamy	Mixed
Fine loamy, mixed, thermic Typic Haploustults	Ultisols	Ustults	Haploustults	Typic Haploustults	Ustic	Thermic	Fine loamy	Mixed
Fine loamy, mixed, isohyperthermic Typic Haplustalf	Alfisols	Ustalfs	Haplustalf	Typic Haplustalf	Ustic	Isohyperthermic	Fine loamy	Mixed
Fine, kaolinitic, isohyperthermic, Rhodic Haplustox	Oxisol	Ustox	Haplustox	Rhodic Haplustox	Ustic	Isohyperthermic	Fine	Kaolinitic

Fill up the blanks

1	Soil Survey	39	Soil map
2	Rectangular	40	Base map
3	Horizons	41	Taxonomic unit
4	Thickness, irregularity	42	Aerial photograph , satellite imageries
5	Smooth, wavy, irregular, broken	43	Toposheets
6	Mottles	44	DSS
7	Abundance, size , shape	45	1/2 to 1 km
8	Dilute HCl	46	640 acre
9	Amimal	47	3 to 6 km
10	Histic	48	1: 50,000
11	Ochric	49	1: 4000 or 1: 8000
12	Natric	50	Soil series and association
13	Erts	51	Soil types and phases
14	Mollic	52	RSS
15	Alfisols	53	DSS
16	Histosols	54	Taluk or district
17	Oxisols	55	Village or block
18	Soil profile	56	Small scale
19	12	57	Large scale
20	I inch = 1 mile	58	DSS
21	Cadastral / Village	59	RSS
22	Small scale map	60	Low intensity
23	Soil types, soil phases	61	High Intensity
24	seven	62	1: 1 million
25	order	63	1: 250.000
26	Soil series	64	1: 50,000 or 1:10000
27	Vertisol	65	Storie
28	Entisol	66	Good
29	Histosol	67	Potential productivity/ productivity
30	Mollisol	68	Capability units
31	Vertisol	69	Increases
32	Spodosol	70	cultivation
33	Entisol	71	Unsuitable
34	Oxisol	72	Surface texture
35	Aquic to Xeric	73	Soil survey maps
36	Pergelic to isothermic	74	Order and Class
37	Diagnostic horizons	75	pH
38	SMR and STR	76	Buchner funnel

77	Vacuum	99	Flesh red
78	Soil EC	100	35.5
79	Saline and Non-saline soil	101	Phenolphthalein
80	Saturation paste	102	Methyl orange
81	Sodium acetate	103	30
82	Acid soil	104	120 ppm
83	Buffer, Shoemaker et al., (1961)	105	Gravimetric
84	Schoonover et al., (1952)	106	48
85	Eriochrome black T	107	$Na/\sqrt{Ca+Mg}$
0.6		100	2
86	86	108	Moderately safe
87	Gypsum	109	Silver chromate
88	EDTA or Versenate	110	Unsuitable
89	20	111	Na / V Ca
90	12.16	112	one
91	0.0004 g	113	RSC and RSBC
92	0.0002432 g	114	Cl- + ¹ / ₂ SO ₄
93	Mureoxide	115	Not suitable
94	Eriochrome black T	116	EC and SAR
95	Eq Wr	117	Nagpur
96	Flame photometer	118	Five
97	Potassium chromate	119	Coimbatore, 1970
98	0.00071 g	120	four